久久天天躁综合夜夜黑人鲁色,超91在线,久久夜视频,91av免费在线观看,在线视频二区,亚洲欧美日韩专区一,在线播放国产一区二区三区

網(wǎng)站首頁 | 網(wǎng)站地圖

大國新村
首頁 > 原創(chuàng)精品 > 成果首發(fā) > 正文

人工智能大模型表征方式的一致性及其哲學(xué)啟示

【摘要】以大數(shù)據(jù)、強(qiáng)算力、多模態(tài)和高維度等訓(xùn)練出來的人工智能大模型愈發(fā)智能,體現(xiàn)出類人的“聰明”?;谙到y(tǒng)穩(wěn)定性、功能有效性和優(yōu)化可能性要求,大模型將注意力機(jī)制嵌入系統(tǒng)之中,使基于不同數(shù)據(jù)訓(xùn)練出來的不同大模型在處理數(shù)據(jù)時(shí)體現(xiàn)出表征收斂的趨向。大模型的表征收斂,一方面,顯示出基于神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)具有實(shí)現(xiàn)通用人工智能的技術(shù)潛質(zhì);另一方面,也印證了大數(shù)據(jù)挖掘、大模型超越、強(qiáng)算力迭代和高維度透視所形成的智能具有類人性。因此,雖然人工智能大模型的表征收斂是人工智能智能性的技術(shù)體現(xiàn),本質(zhì)上卻是以人類本質(zhì)力量對(duì)象化的方式考問智能本質(zhì)的哲學(xué)追問。與其說是大模型試圖表示現(xiàn)實(shí)模型的穩(wěn)定性推動(dòng)了系統(tǒng)的表征收斂,倒不如說是大模型以“挖掘即認(rèn)知”“學(xué)習(xí)獲智能”“高維達(dá)簡潔”對(duì)觀測的經(jīng)驗(yàn)升華構(gòu)成了表征收斂的智能動(dòng)因。

【關(guān)鍵詞】表征收斂 哲學(xué)敘事 大模型 人工智能

【中圖分類號(hào)】TP18 【文獻(xiàn)標(biāo)識(shí)碼】A

【DOI】10.16619/j.cnki.rmltxsqy.2024.14.005

【作者簡介】涂良川,華南師范大學(xué)馬克思主義學(xué)院副院長、教授、博導(dǎo),廣東省習(xí)近平新時(shí)代中國特色社會(huì)主義思想研究中心特約研究員。研究方向?yàn)槿斯ぶ悄苷軐W(xué)、馬克思主義哲學(xué)基礎(chǔ)理論和政治哲學(xué)研究。主要著作有《馬克思政治哲學(xué)視域中的分配正義問題研究》、《在正義與解放之間——馬克思正義觀的四重維度》、《歷史唯物主義與政治哲學(xué)》(合著)等。

由大語言模型所支持的Sora獲得了巨大成功,說明今天的人工智能大模型具有了超越內(nèi)容的跨越性。近期,麻省理工學(xué)院研究團(tuán)隊(duì)發(fā)表了名為《柏拉圖式的表征假說》的研究論文,更提出“人工智能模型,特別是深度網(wǎng)絡(luò)中的表征正在收斂”[1]。雖然,工程學(xué)的成功和理論研究成果都難以證明基于人工神經(jīng)網(wǎng)絡(luò)的、不可解釋的大模型已經(jīng)實(shí)現(xiàn)了通用人工智能,并有觸發(fā)人工智能奇點(diǎn)的可能性。[2]但具有表征收斂“能力”的人工智能不僅能夠通過“圖靈測試”,而且表明基于大模型的人工智能“正確地生成知識(shí)并作出預(yù)測是可能的”[3]。也就是說,人工智能的表征收斂,不僅意味著不同的人工智能模型(比如語言模型和視覺模型)挖掘數(shù)據(jù)的結(jié)果具有一致性,從而證明數(shù)據(jù)描述對(duì)象的客觀性與穩(wěn)定性,而且充分表明大模型正在獲得超數(shù)據(jù)、跨模型的表征能力,強(qiáng)算力、多參數(shù)、高維度和難解釋的大模型“正在生成一個(gè)類似于柏拉圖理念論的現(xiàn)實(shí)統(tǒng)計(jì)模型”[4],呈現(xiàn)大模型表征方式的一致性,以及能夠在數(shù)據(jù)挖掘中獲得認(rèn)知的能力。由此,人工智能大模型表征收斂的意義,顯然超越了人工智能技術(shù)要求的運(yùn)行邏輯一致性、功能實(shí)現(xiàn)穩(wěn)定性和系統(tǒng)優(yōu)化連續(xù)性,深入到了人工智能之智能本質(zhì)之中。因?yàn)榇竽P偷谋碚魇諗坎皇俏锢硎澜绲聂敯粜栽谟?jì)算邏輯中的表達(dá),而是由大模型處理數(shù)據(jù)的機(jī)制、學(xué)習(xí)定義的規(guī)則和校驗(yàn)形成的改進(jìn)而得以保障。大模型的“人工神經(jīng)網(wǎng)絡(luò)模仿的是大腦神經(jīng)回路的機(jī)制,并被成功地應(yīng)用于機(jī)器學(xué)習(xí)”[5],其表征收斂,不僅是對(duì)這一模仿行為有效性的證明,也是對(duì)人類智能之智能特性的表達(dá)。因此,大模型所構(gòu)建的挖掘機(jī)制、實(shí)現(xiàn)的跨越能力和達(dá)到的高維透視,雖然依然是“大數(shù)據(jù)小任務(wù)”和“大數(shù)據(jù)大任務(wù)”,離人類經(jīng)驗(yàn)觀察獲得智能“小數(shù)據(jù)大任務(wù)”的機(jī)制還有一定差距,但卻肯定了機(jī)器智能表達(dá)是挖掘數(shù)據(jù)的學(xué)習(xí)、窮盡可能的通用和跨越領(lǐng)域的統(tǒng)一,并正在以“越來越相似的方式測量數(shù)據(jù)單元之間的距離”,“表征數(shù)據(jù)的方式也在變得越發(fā)一致”。[6]顯然,大模型表征收斂的意義,不僅在于其以機(jī)器智能的方式再一次肯認(rèn)了經(jīng)驗(yàn)世界穩(wěn)定性這一唯物主義原則,而且更以人類本質(zhì)力量對(duì)象化的方式證明了人“自己思維的真理性”,即自己思維的“現(xiàn)實(shí)性和力量”[7]。

數(shù)據(jù)表存在與挖掘即認(rèn)知

大模型的表征收斂在技術(shù)邏輯中體現(xiàn)為模型邏輯應(yīng)對(duì)任務(wù)的靈活性,使其超越了“經(jīng)典符號(hào)人工智能或GOFAI開創(chuàng)”的“問題的計(jì)算機(jī)表示”的“部分搜索”,[8]在建構(gòu)問題的新表示中,既能夠搜索不同空間,又能夠形成應(yīng)對(duì)問題的有效策略。一方面,這意味著達(dá)到表征收斂的大模型已然能夠通過“圖靈測試”并具有了智能,[9]另一方面,也表明人工智能挖掘數(shù)據(jù)能夠獲得對(duì)數(shù)據(jù)對(duì)象穩(wěn)定的認(rèn)知。因此,大模型的表征收斂不僅為人工智能技術(shù)發(fā)展提供了新的便利,還表明認(rèn)知本身具有相對(duì)穩(wěn)定的一般結(jié)構(gòu)。大模型基于大數(shù)據(jù)訓(xùn)練而成是不爭的事實(shí),然而,大數(shù)據(jù)之“大”并非復(fù)刻整全存在的任意大,這既緣于技術(shù)本身的限制,也是大數(shù)據(jù)客觀存在的特質(zhì)。因此,經(jīng)由數(shù)據(jù)挖掘而獲得的收斂性并非是數(shù)據(jù)自身具有的客觀結(jié)構(gòu),而是大模型形成的內(nèi)部表征。大模型以此為邏輯的表征收斂,使基于數(shù)據(jù)的知識(shí)描述物理實(shí)體具有穩(wěn)定性、客觀性和可行性。雖然這不是傳統(tǒng)邏輯的一致性、不矛盾性和齊一性,但是其行為主義的有效性卻充分證明了挖掘即認(rèn)知的重要觀念。

表征收斂是大模型表達(dá)數(shù)據(jù)特性的功能特性。當(dāng)然,大模型的表征收斂不是直接把數(shù)據(jù)具有的收斂性復(fù)制進(jìn)系統(tǒng),而是進(jìn)入數(shù)據(jù)生成的結(jié)果之中才獲得對(duì)數(shù)據(jù)存在邏輯的認(rèn)知。我們知道,“在解釋裝置如何工作時(shí)并不需要表征概念;只有在解釋裝置怎樣完成設(shè)計(jì)者預(yù)定的功能時(shí)才需要表征概念”[10]。表征收斂表面上看是系統(tǒng)的功能性特質(zhì),但是卻從根本上體現(xiàn)出大模型挖掘大數(shù)據(jù)的初衷和基本假設(shè)。大模型參考柏拉圖的“洞穴隱喻”,認(rèn)為表征收斂的終點(diǎn)與核心原則是“不同的模型都只是從不同維度對(duì)現(xiàn)實(shí)的一種描述”[11]。當(dāng)然,大模型的描述本身就是一種判斷,不同大模型基于不同維度處理了大數(shù)據(jù)本身。然而,“所有數(shù)據(jù)都是由人類生成的”,“數(shù)據(jù)是由社會(huì)構(gòu)建的”。[12]無論是數(shù)據(jù)表達(dá),還是從數(shù)據(jù)中獲得的規(guī)律,都不再是被“洞穴”之外的普照光投射到影壁上的描述。人類生成數(shù)據(jù)、社會(huì)建構(gòu)數(shù)據(jù)“并不是隨心所欲地創(chuàng)造,并不是在他們自己選定的條件下創(chuàng)造,而是在直接碰到的、既定的、從過去承繼下來的條件下創(chuàng)造”[13]出來的數(shù)據(jù)。因此,數(shù)據(jù)作為抽象的對(duì)象,并不能構(gòu)成大模型的因果性輸入,而只能是被重新還原的“洞穴上的陰影”[14]。雖然大模型在數(shù)據(jù)訓(xùn)練的直接性上面對(duì)的是封閉系統(tǒng)內(nèi)的特質(zhì)問題,但是卻不必依賴于布倫塔諾的“心理現(xiàn)象不是由物理規(guī)律而是由心理規(guī)律本身決定”[15]的假設(shè),就可以在模型表征中對(duì)齊數(shù)據(jù)并獲得有效預(yù)測。究其原因,無論是歷史唯物主義所保障的人類社會(huì)行為的穩(wěn)定性中內(nèi)蘊(yùn)的數(shù)據(jù)收斂性,還是普特南“收斂現(xiàn)實(shí)主義”的哲學(xué)確認(rèn),都指向數(shù)據(jù)存在的對(duì)齊本性。當(dāng)然,大模型并沒有把數(shù)據(jù)作為物理主義的假設(shè),而是“使用編程語言描述的數(shù)學(xué)定義以及關(guān)于其數(shù)據(jù)結(jié)構(gòu)的公理”[16]來證明數(shù)據(jù)刻畫事實(shí)的有效性,也就必然會(huì)表達(dá)為表征的收斂性。

大模型的表征收斂不僅事實(shí)性地證明了數(shù)據(jù)表征存在的穩(wěn)定性與客觀性,而且表明大模型挖掘的認(rèn)識(shí)活動(dòng)具有收斂性。大模型挖掘即認(rèn)知的“創(chuàng)構(gòu)認(rèn)識(shí)論”[17]范式成功搭建了“‘安娜·卡列尼亞’場景”[18]。一方面,不同結(jié)構(gòu)良好的大模型并不會(huì)影響數(shù)據(jù)表達(dá)的存在,因?yàn)椴煌竽P投际且酝瑯拥臋C(jī)制表達(dá)著世界的可能性。今天的大模型不僅都是以具有反向傳遞性的神經(jīng)網(wǎng)絡(luò)作為物理結(jié)構(gòu),而且都是以深度學(xué)習(xí)作為認(rèn)知邏輯。因此,大模型的不同模型不過是“條條大路通羅馬”的“條條大路”,都只是把“內(nèi)部結(jié)構(gòu)插入其中”而已。[19]另一方面,大模型之大本身就蘊(yùn)涵著“越多越好”[20]的原則,越多的數(shù)據(jù)、參數(shù)和訓(xùn)練交織形成復(fù)雜性越能保證表征的收斂性。雖然量大首先是基于技術(shù)設(shè)計(jì)的考量和表征逼近的方便,但其本身既意味著數(shù)據(jù)刻畫對(duì)象維度的復(fù)雜和視角的全面,又說明了動(dòng)態(tài)修正和不斷優(yōu)化才是保證對(duì)齊和收斂的根本方式。由此看來,大模型的表征收斂堅(jiān)持了唯物主義對(duì)象穩(wěn)定性的原則,卻又不是從規(guī)定原則來分析對(duì)象的客觀性。因此,一方面,數(shù)據(jù)這種基于信息的存在,作為大模型挖掘的對(duì)象向大模型本身敞開其內(nèi)在的結(jié)構(gòu),另一方面,大模型也建構(gòu)了大數(shù)據(jù)表達(dá)自身的結(jié)構(gòu)。由此可見,大模型的表征收斂是大數(shù)據(jù)與大模型雙向奔赴的結(jié)果。大模型的大參數(shù)和大訓(xùn)練顯然不是對(duì)大數(shù)據(jù)同一維度的重復(fù)加總,也并非是在追求絕對(duì)全面中呈現(xiàn)大數(shù)據(jù)刻畫對(duì)象不可見的一面,而是堅(jiān)持特征向量具有的魯棒性?;蛘哒f,大參數(shù)和大訓(xùn)練本身接受了康托集和哥德爾不完全定理的哲學(xué)訓(xùn)誡,以挖掘認(rèn)知的穩(wěn)定性而不是“實(shí)在的自洽觀念”[21]來保障表征的收斂性。由此帶來的深層哲學(xué)意涵則是,“大”所支撐的表征收斂本身體現(xiàn)了創(chuàng)構(gòu)數(shù)據(jù)的人類實(shí)踐的穩(wěn)定性,大參數(shù)與大訓(xùn)練則構(gòu)成了穩(wěn)定性的另一重隱喻。即在認(rèn)知中,客觀實(shí)在、對(duì)象的自洽等并非是認(rèn)知成果一致性的必要條件,經(jīng)由人創(chuàng)構(gòu)的機(jī)制本身也可以保住表征的收斂性,并“標(biāo)志著我們已然觸到了實(shí)在界/真實(shí)(the real)”[22]。

因此,雖然訓(xùn)練數(shù)據(jù)在表征收斂中具有基礎(chǔ)性意義,但卻并非是數(shù)據(jù)本體結(jié)構(gòu)向大模型認(rèn)知結(jié)構(gòu)的直觀遷移,而是以數(shù)據(jù)表存在的認(rèn)知通過建構(gòu)和挖掘獲得認(rèn)知穩(wěn)定性的新驗(yàn)證。大模型依賴訓(xùn)練數(shù)據(jù)生成系統(tǒng)能力意味著大模型生成的對(duì)象、預(yù)測的結(jié)論和產(chǎn)生的規(guī)范,都是由模型的結(jié)構(gòu)和數(shù)據(jù)的特性雙重規(guī)定的。一方面,雖然大模型對(duì)數(shù)據(jù)的挖掘既能夠呈現(xiàn)數(shù)據(jù)既有的內(nèi)在基本結(jié)構(gòu),又能夠擴(kuò)展其可能的相互聯(lián)結(jié),但是數(shù)據(jù)既有的約束性是大模型運(yùn)行的規(guī)定性卻是不爭事實(shí)。另一方面,數(shù)據(jù)本身又是一個(gè)開放性的結(jié)構(gòu),這既是由數(shù)據(jù)產(chǎn)生的邏輯決定的,又是由大模型挖掘數(shù)據(jù)本身所推動(dòng)的。因此,當(dāng)數(shù)據(jù)描述事實(shí)、再構(gòu)事實(shí)和檢視事實(shí)的時(shí)候,就既不是前定邏輯的再現(xiàn),也不是任意組合的混亂,更不是神創(chuàng)論的無中生有。大模型要實(shí)現(xiàn)功能有效性,必須在其挖掘數(shù)據(jù)來實(shí)現(xiàn)“抽象-具象”生成[23]、功能有效預(yù)測時(shí)遵循某種基本規(guī)則。而且事實(shí)證明,大模型特別是視覺大模型“與人類在一系列識(shí)別任務(wù)中的表現(xiàn)是相匹配的”[24]。也就是說,雖然大模型挖掘數(shù)據(jù)的過程具有弱可解釋性甚至黑箱屬性,但是其遵從數(shù)據(jù)的客觀性使其表征收斂獲得了“本體論承諾”,而大模型基于不同觀念、功能和算法的挖掘獲得了處理能力,既在描述客體、預(yù)測結(jié)果和處理任務(wù)等方面表現(xiàn)出趨同性,又在處理數(shù)據(jù)的表征能力上呈現(xiàn)收斂性。顯然,經(jīng)由大模型挖掘的數(shù)據(jù),一是進(jìn)一步呈現(xiàn)了其中隱藏的可能性;二是形成了對(duì)大模型表征能力的限制;三是超越了數(shù)據(jù)本身,呈現(xiàn)了新的理想性。如此看來,當(dāng)大模型立足于數(shù)據(jù)在生成系統(tǒng)的處理能力時(shí),一方面,在唯物主義層面上貫徹了“萬物源于比特”[25]的存在論原則,以表征的收斂性回避了“中文屋”的詰難,使“計(jì)算機(jī)可以通過操縱字符串做到即使并不理解問題含義,也能給出似乎理解了的答案”[26]。另一方面,大模型的表征收斂本身意味著,基于數(shù)據(jù)挖掘所形成的認(rèn)知事實(shí)上是一種“參與型”的認(rèn)知,[27]這既以高階自動(dòng)化的技術(shù)邏輯肯定了“我們是通過觀察和研究行為來理解世界”[28]的事實(shí),又意味著以思維建構(gòu)的大模型在大數(shù)據(jù)的訓(xùn)練中,能夠獲得穩(wěn)定的理解世界的方式,這已被諸如AlphaFold等科研助手的強(qiáng)大功能所證明。

如此看來,大模型的表征收斂具有超越人工智能系統(tǒng)完備性和功能性的人類學(xué)意義。大模型不是將數(shù)據(jù)作為物理系統(tǒng)和社會(huì)歷史映射對(duì)象的產(chǎn)物,從而在數(shù)據(jù)的趨同性中獲得表征的收斂性。大模型的表征收斂顯然不僅是海量參數(shù)、巨量數(shù)據(jù)和強(qiáng)大算力帶來的技術(shù)穩(wěn)定性與功能一致性,更是對(duì)智能認(rèn)知內(nèi)涵與邏輯的時(shí)代性拓展與歷史性創(chuàng)新:其一,人類認(rèn)知成果的內(nèi)容和結(jié)構(gòu)由人類自身參與建構(gòu);其二,人類創(chuàng)建的高階自動(dòng)化體系獲得了認(rèn)知能力;其三,智能的認(rèn)知既是還原與解釋對(duì)象的自洽邏輯,更是生成全新內(nèi)容的建構(gòu)邏輯。因此,與其說大模型肯定了數(shù)據(jù)之后的數(shù)據(jù)挖掘結(jié)果具有重要意義,是人類既有知識(shí)的豐富與擴(kuò)展,倒不如說大模型以獨(dú)特的運(yùn)行機(jī)制提出了人類智能自我理解和發(fā)展的道路問題。

“大力出奇跡”與學(xué)習(xí)獲智能

一方面,大模型以超強(qiáng)算力將人類智能費(fèi)時(shí)費(fèi)力也難以發(fā)現(xiàn)的事實(shí)揭示出來,超越了生物智能的有限性,使其表征收斂的結(jié)論不僅構(gòu)成了知識(shí)的全新內(nèi)容,而且深化了自近代以來注意經(jīng)驗(yàn)形而上學(xué)的認(rèn)知觀念,并以反向傳遞內(nèi)化經(jīng)驗(yàn)為先驗(yàn)方式揭示了人類實(shí)踐改變認(rèn)識(shí)方式的具體過程。另一方面,大模型以超強(qiáng)算力體現(xiàn)出的表征收斂獲得了生成式能力,確證了深度學(xué)習(xí)獲得智能的事實(shí)。大模型的表征收斂使“我們有了一種新型的知識(shí),它讓我們無須借助數(shù)學(xué)分析進(jìn)行理解,便可以作出預(yù)測”[29]、生成對(duì)象和驗(yàn)證結(jié)論。顯然,如此的成績緣于大模型不斷以強(qiáng)大的算力從數(shù)據(jù)中進(jìn)行學(xué)習(xí)。雖然大模型的底層學(xué)習(xí)邏輯是對(duì)控制輸入與輸出的參數(shù)進(jìn)行修正,但這一學(xué)習(xí)過程使大模型刻畫的既有對(duì)象更加完美,通過“模型縫合”[30]形成了參數(shù)之間的交叉影響與相互制約,從而管理和更新“在不同模型中擁有相同概念的神經(jīng)元”[31]。

大模型是在強(qiáng)大算力加持下,化經(jīng)驗(yàn)為數(shù)據(jù),以數(shù)據(jù)為基礎(chǔ)進(jìn)行的系統(tǒng)的自我建構(gòu),[32]在迭代中達(dá)到的表征收斂是學(xué)習(xí)成智的機(jī)器表達(dá)。在技術(shù)領(lǐng)域內(nèi)已形成這樣的基本共識(shí),即模型的規(guī)律擴(kuò)大和性能提升推進(jìn)了模型表征數(shù)據(jù)的對(duì)齊能力。[33]支持大模型有如此表現(xiàn)的根本在于大模型處理大數(shù)據(jù)時(shí)的強(qiáng)算力。顯然,強(qiáng)算力以獨(dú)特的方式支持了大模型的表征收斂。從發(fā)生學(xué)的角度看,強(qiáng)算力可以充分挖掘數(shù)據(jù)刻畫對(duì)象的邏輯與方式。一方面,強(qiáng)算力使計(jì)算概率、判斷回歸和校驗(yàn)齊一的計(jì)算行為獲得了類概念的表達(dá)能力,使模型既學(xué)習(xí)到了數(shù)據(jù)刻畫對(duì)象的邏輯,又學(xué)習(xí)到了數(shù)據(jù)中蘊(yùn)涵的邏輯,從對(duì)象存在對(duì)齊的層面和刻畫對(duì)象對(duì)齊的層面保證了表征收斂的可能性。另一方面,強(qiáng)算力的迭代雖然不斷地調(diào)用模型的基本規(guī)則,卻是以經(jīng)驗(yàn)先驗(yàn)化的方式不斷審視大模型表征能力自身。強(qiáng)算力的時(shí)間疊加不僅能夠保障數(shù)據(jù)挖掘的寬度與廣度,而且“具有類似的內(nèi)部活動(dòng)”,并且“隨著模型擴(kuò)展的持續(xù)積累,模型的表征對(duì)齊的能力也會(huì)隨著時(shí)間的推移而增強(qiáng)”。[34]再一方面,大模型的強(qiáng)算力使得多層網(wǎng)絡(luò)在技術(shù)上具有可行性,在深度學(xué)習(xí)上可收斂,其在保障結(jié)果收斂的過程中不再依賴因果邏輯將數(shù)轉(zhuǎn)換成智,而是將“無理變?yōu)榉蔷€性的有理”[35],這在機(jī)器學(xué)習(xí)中體現(xiàn)為“通過可能的隱性或顯性正則化極度降低經(jīng)驗(yàn)風(fēng)險(xiǎn)”[36],而在哲學(xué)上則表達(dá)為大模型獲得了類概念的理解力和處理力。當(dāng)然,這里的理解顯然就是表征收斂的一致性刻畫能力、預(yù)測邏輯和調(diào)適過程。大模型訓(xùn)練之所以極度依賴強(qiáng)算力,一方面是因?yàn)檫_(dá)到表征收斂本身是多層嵌入縫合的結(jié)果,而這本身就是一個(gè)極度消耗算力的過程,另一方面則是因?yàn)楸碚魇諗渴峭ㄟ^整合“簡單的表示來表達(dá)復(fù)雜表示”[37]達(dá)到的,而這意味著多層迭代。因此,強(qiáng)算力賦予大模型提取數(shù)據(jù)信息、形成模式判斷、呈現(xiàn)有效規(guī)劃的表征收斂性,使其具有“從對(duì)象化樣本(比如許多葉子圖像)學(xué)到非對(duì)象化的對(duì)象識(shí)別(比如辨認(rèn)出從未見過的或千變?nèi)f化的葉子)的能力”[38]。這既是滿足大模型技術(shù)初衷的智能學(xué)習(xí),又體現(xiàn)了大算力、高強(qiáng)度和多對(duì)象的學(xué)習(xí)是“累事成識(shí)”“化識(shí)為釋”“升釋獲智”[39]的重要方式。

大模型的表征收斂特別強(qiáng)調(diào)與強(qiáng)算力直接相關(guān)的規(guī)模與性能,原因在于大模型學(xué)習(xí)本身是高度復(fù)雜的數(shù)據(jù)學(xué)習(xí),這也意味著學(xué)習(xí)獲智是一個(gè)長期的、開放的過程。就大模型表征收斂的存在論指向而言,大模型的表征收斂絕不意味著人工智能達(dá)到了全知全能的“奇點(diǎn)”[40]狀態(tài)。大模型的“神經(jīng)網(wǎng)絡(luò)與大腦中的生物表征表現(xiàn)出實(shí)質(zhì)性的一致性”[41],本身就是由積累而生成的開放性,并具有三方面的意義:其一,表征收斂是“大力出奇跡”所呈現(xiàn)的大規(guī)模處理數(shù)據(jù)、形成策略和解決問題的邏輯穩(wěn)定性和功能穩(wěn)定性,而非系統(tǒng)的封閉性。否則,大模型的表征收斂就會(huì)走向其反面:如果大模型的表征收斂運(yùn)作良好,那么大模型的邏輯就會(huì)固化、功能就會(huì)單一,[42]從而與大模型表征收斂通用化的事實(shí)與追求相悖。其二,大模型強(qiáng)算力與大規(guī)模所集成的是人類社會(huì)歷史生成的“一般智力”[43],其加持的物質(zhì)體系獲得表征收斂性并不是物質(zhì)體系自在發(fā)展的成果,而是人類智能激活物性力量的成果。因此,大模型收斂性是“以大力出奇跡”的方式“對(duì)現(xiàn)有文化的大規(guī)模挪用”[44]所獲得的發(fā)展性。這顯然預(yù)示著大模型不僅作為人工智能的物質(zhì)體系具有強(qiáng)大的力量,也必然構(gòu)成當(dāng)今人類智能的組成部分,更表明大模型“大力出奇跡”的學(xué)習(xí)具有活動(dòng)的穩(wěn)定性、知識(shí)邏輯的延續(xù)性和智能內(nèi)容的開放性。大模型“大力出奇跡”本身并非是靠量取勝的機(jī)械積累,而是一個(gè)以深度學(xué)習(xí)表達(dá)獲取智能的過程。[45]其三,大模型的表征收斂是“大力出奇跡”的學(xué)習(xí)所獲得的一種“能力”,是由既定現(xiàn)實(shí)規(guī)定和潛在現(xiàn)實(shí)引領(lǐng)的收斂性。或者說,大模型收斂性并非是由喬姆斯基的“抄襲斷定”[46]所決定的,而是由大規(guī)模本身依據(jù)的學(xué)習(xí)機(jī)制所形成的。一方面,“大力出奇跡”的機(jī)制能夠在大模型的學(xué)習(xí)中直接實(shí)現(xiàn)“吃一塹長一智”的積累機(jī)制,從而使模型在調(diào)節(jié)參數(shù)、形成連接和衍生關(guān)系時(shí)實(shí)現(xiàn)自我學(xué)習(xí)機(jī)制的迭代改進(jìn);另一方面,“大力出奇跡”能夠使系統(tǒng)同時(shí)兼顧輸入系統(tǒng)的“外部經(jīng)驗(yàn)”與系統(tǒng)生成的“內(nèi)部經(jīng)驗(yàn)”,并通過遞歸的、有限的“無上限自舉(bootstrap heaven)”[47]而實(shí)現(xiàn)內(nèi)外的一致性。因此,以大語言模型為代表的大模型不僅具有專業(yè)領(lǐng)域的適配性,而且還具有通用領(lǐng)域的穩(wěn)定性。表面上看,這是因?yàn)榇竽P?ldquo;大力出奇跡”能夠盡可能地實(shí)現(xiàn)分析的邏輯可能性,本質(zhì)上而言卻呈現(xiàn)出大模型學(xué)習(xí)的可行性和習(xí)以獲智的必然性。當(dāng)然,也正是因?yàn)榇竽P捅旧韮?nèi)置了“大力出奇跡”的原則,雖產(chǎn)生了難以闡明的智能過程的黑箱問題,但從根本上肯定了學(xué)習(xí)獲智是智能發(fā)展的基本方式。

大模型的表征收斂并非是以高容量模型來窮舉復(fù)雜多樣的內(nèi)容信息形成的有限歸納,而是以大模型本身的“大力”去表達(dá)信息有效的結(jié)構(gòu)?;蛘哒f,大模型的表征收斂不是暴力計(jì)算的還原論,不是“通過簡單現(xiàn)象的疊加‘涌現(xiàn)’出來”[48]的一致性和穩(wěn)定性,而是在實(shí)際對(duì)比的學(xué)習(xí)中建構(gòu)起獨(dú)立于時(shí)間和空間的表現(xiàn)形式。大模型的表征收斂有兩個(gè)基本面:一是“信息等同于底層世界的信息”[49]的收斂性,二是轉(zhuǎn)換信息能力的收斂性。顯然,這兩種收斂都不是事先定義好標(biāo)準(zhǔn)和目的的收斂,而是寬容信息的增減,并是利用隨機(jī)機(jī)制基于“經(jīng)驗(yàn)數(shù)據(jù)的方法”[50]達(dá)到的收斂。因此,收斂的大模型和大模型的收斂,本身只是以“大力出奇跡”的方式“找到了一條較好的路徑”[51],但并非是最好或最佳的唯一路徑,這一事實(shí)已被不同公司開發(fā)的大模型表現(xiàn)出同一能力的收斂性所證明。當(dāng)然,無論是體現(xiàn)為結(jié)果的收斂性,還是呈現(xiàn)為挖掘數(shù)據(jù)能力的收斂性,本身都表達(dá)知識(shí)的有效性,能夠有效地解釋更多發(fā)生的現(xiàn)象、深入地挖掘更多的可能、高效地實(shí)現(xiàn)更遠(yuǎn)的目標(biāo),等等。比如,“訓(xùn)練有素的自動(dòng)回歸生成文本的模型還捕獲了許多其他模式的統(tǒng)計(jì)關(guān)系,如符號(hào)推理、視覺生成、蛋白質(zhì)折疊和機(jī)器人學(xué)”[52]。無論這一過程是自上而下還是自下而上,大模型的表征收斂本身就意味著不斷的學(xué)習(xí)本身可以增加系統(tǒng)的智識(shí)穩(wěn)定性,這一方面緣于大模型神經(jīng)網(wǎng)絡(luò)的可塑性,另一方面則與“大力出奇跡”的學(xué)習(xí)相關(guān)。因此,大模型本身就是不斷“改進(jìn)對(duì)經(jīng)驗(yàn)的表征,就是通過已有的內(nèi)在條件對(duì)外部實(shí)在作出適當(dāng)?shù)谋碚?rdquo;[53],事實(shí)上就是以支持隱喻的方式肯定了“實(shí)踐出真知”這一基本的認(rèn)識(shí)論命題。大模型以“大力出奇跡”的方式不斷地將系統(tǒng)運(yùn)行的結(jié)論(可能是外在干預(yù)的,可能是預(yù)先設(shè)定的,可能是動(dòng)態(tài)判定的)內(nèi)化為系統(tǒng)表征的構(gòu)成要素。

因此看來,大模型的表征收斂雖然是“大力出奇跡”的技術(shù)成功,但本質(zhì)上卻指向了學(xué)習(xí)尤其是充分而有效的學(xué)習(xí)之于智能的意義與價(jià)值。大模型的表征收斂之所以能夠突破傳統(tǒng)人工智能“大數(shù)據(jù)小任務(wù)”的限制,在于其引入了學(xué)習(xí)機(jī)制。不論是向?qū)ο髮W(xué)習(xí)的復(fù)刻式再現(xiàn),還是向自我學(xué)習(xí)的反思式改進(jìn),都是獲取穩(wěn)定知識(shí)的不二途徑。無論是對(duì)人還是對(duì)人工智能,在“智力的獲得是人與外界交流學(xué)習(xí)的結(jié)果”[54]這一點(diǎn)上是相同的。因此,人工智能表征的收斂必然依賴于數(shù)據(jù)的大、算力的強(qiáng)和領(lǐng)域的廣。這意味著人工智能這一“以我們自身的形象創(chuàng)造的、具有智能的人工造物”[55]正在以社會(huì)歷史性的力量拓展我們的認(rèn)知、擴(kuò)展我們的視野、豐富我們的知識(shí)。因此,人工智能大模型的成功,不僅意味著人類獲智的方式得到了拓展,更意味著人類智能必須學(xué)習(xí)新的內(nèi)容,人工智能大模型已然成為人類學(xué)習(xí)必須面對(duì)的客觀對(duì)象。

跨越現(xiàn)統(tǒng)一與高維達(dá)簡潔

大模型的表征收斂意味不同模型通過訓(xùn)練后具有處理數(shù)據(jù)能力的一致性,這對(duì)于當(dāng)今人工智能一直追求的通用化絕對(duì)是一個(gè)利好的進(jìn)展。按照一般的觀點(diǎn)看,這是大模型高度的復(fù)雜性“涌現(xiàn)”出來的智能所致,不過仔細(xì)分析就會(huì)發(fā)現(xiàn),大模型雖然存在黑箱的解釋難題,但卻以強(qiáng)大的算力實(shí)現(xiàn)了數(shù)據(jù)的高維處理。而大模型本身又是以指令、存儲(chǔ)和自動(dòng)運(yùn)行為基本邏輯,這使得大模型可以在高維中以多模型的轉(zhuǎn)譯來再造真實(shí)、以浸入式讀寫來豐富知識(shí)、以通用化生成來生成現(xiàn)實(shí)。[56]因此,大模型表征收斂顯然不是其處理數(shù)據(jù)維度的收斂性,而是高維達(dá)到的降維的簡潔。一方面,“不要從技術(shù)角度想,從哲學(xué)高度想”[57]大模型的表征收斂,才能夠真實(shí)地把握為什么不同模型表示數(shù)據(jù)的方式愈發(fā)一致。另一方面,大模型的表征收斂本身既是技術(shù)標(biāo)準(zhǔn)和目的之事,更是以技術(shù)方式展示的智能之事。

大模型拼接不同模型,表面上增加了表征收斂的復(fù)雜度,實(shí)質(zhì)上卻通過增加維度的方式實(shí)現(xiàn)了模型類別的跨越。從當(dāng)前人工智能的發(fā)展路徑看,系統(tǒng)的冗余雖有限度,但卻允許增加維度的模型拼接。顯然,這并非表明一個(gè)經(jīng)過系統(tǒng)訓(xùn)練后的模型就能夠直接運(yùn)用于其他模型之中,而是表明不同種類的組合、處理維度的增加并非把系統(tǒng)的表征能力推向發(fā)散的方向,恰恰相反,其反而加強(qiáng)了系統(tǒng)的收斂性。即是說,拼接之后的高維度系統(tǒng)對(duì)于降維之后的對(duì)象而言更具有簡潔性的表征能力。因此,今天的大模型之所以特別依賴于強(qiáng)算力和大數(shù)據(jù),雖然有通過挖掘數(shù)據(jù)適配更多情形的動(dòng)因,但卻更是為了讓系統(tǒng)能夠獲得高維的處理能力。只有高維度地解析屬性、分析要素和組合特質(zhì),才能超越對(duì)象特殊屬性泛化成一般屬性的同維度歸納,使系統(tǒng)能夠在對(duì)特征的響應(yīng)中更直接地把握整體,從而生成收斂性的表征能力?;蛘哒f,拼接的高維度事實(shí)上是大模型實(shí)現(xiàn)整體知覺的有效方式。一方面,如果沒有拼接的高維度,表達(dá)為數(shù)據(jù)的實(shí)體或經(jīng)驗(yàn)不可能構(gòu)成表征收斂的存在規(guī)定性,大模型也不可能具有跨越的靈活性;另一方面,拼接雖然并非直接運(yùn)用格式塔的接近律、相似律和連續(xù)律來實(shí)現(xiàn)模型的跨越,但是卻真正體現(xiàn)了大模型在設(shè)計(jì)中運(yùn)用了人類認(rèn)知的一般結(jié)構(gòu)。正如“人體解剖對(duì)于猴體解剖是一把鑰匙”[58]一樣,如此而來的大模型也就自然獲得了跨越的形而上學(xué)根據(jù);再一方面,大模型正是通過拼接獲得了類整體知覺的表征結(jié)構(gòu)。雖然其有邏輯推理的根據(jù),但卻是由高維度的數(shù)據(jù)挖掘來保障。大模型的拼接事實(shí)上構(gòu)造了一條整合以往經(jīng)驗(yàn)的技術(shù)道路,從而為獲得跨越的簡潔奠定了存在論基礎(chǔ)。可以說,大模型的拼接構(gòu)造了一種結(jié)構(gòu),這種結(jié)構(gòu)既解決了蘊(yùn)涵于數(shù)據(jù)的規(guī)律和特質(zhì)進(jìn)入模型知識(shí)內(nèi)容的道路,使其具有更廣的適應(yīng)性和更好的跨越性,又解決了模型“感知”對(duì)象的廣泛性問題,因?yàn)槠唇拥拇竽P湍軌驑?gòu)成一種高維度的“看”,同時(shí)這一過程充分實(shí)現(xiàn)了大模型輸入與輸出的簡化原則,即“得出一個(gè)最簡單、最有可能的形象去與刺激模式相匹配”[59],Sora所引發(fā)的一系列哲學(xué)議題就是最好的證明。

大模型雖然是由數(shù)據(jù)訓(xùn)練出來的系統(tǒng),但是卻有“可以學(xué)習(xí)感知概念的表征”[60]能力,顯然不是概念基礎(chǔ)的物理再現(xiàn),而是高維計(jì)算收斂的簡潔智能。大模型是由多層神經(jīng)網(wǎng)絡(luò)構(gòu)成的高維計(jì)算體系,但卻能夠跨越視覺和語言模式,并以線性變換來實(shí)現(xiàn)同一表征的不同表達(dá)。大模型已創(chuàng)造出解決“高維并行計(jì)算”的諸多算法,多處理器協(xié)調(diào)、分布式系統(tǒng)和云計(jì)算等為高維度表征提供了可能。雖然引發(fā)了一直為人詬病的黑箱問題,但是卻以“站得高看得遠(yuǎn)”的隱喻預(yù)示了大模型表征收斂的哲學(xué)意象。其一,高維度計(jì)算的并行響應(yīng),事實(shí)上和“大腦以并行的方式對(duì)景物的很多不同‘特征’進(jìn)行響應(yīng),并以以往經(jīng)驗(yàn)為指導(dǎo),把這些特征組合成一個(gè)有意義的整體”[61]在邏輯上是同構(gòu)的。當(dāng)然這并非簡單地因?yàn)楣杌斯ど窠?jīng)網(wǎng)絡(luò)和碳基生物神經(jīng)網(wǎng)絡(luò)在物理結(jié)構(gòu)上的一致性,而是由于前者在面對(duì)任務(wù)、喚回記憶、跨越類別和泛化結(jié)構(gòu)等領(lǐng)域與后者的一致。或者說,雖然表征收斂直接達(dá)成了大模型和人腦認(rèn)識(shí)能力與成效上的對(duì)齊,但實(shí)質(zhì)上卻是人類建構(gòu)高維結(jié)構(gòu)、統(tǒng)觀降維對(duì)象的一致性。這和人類通過復(fù)雜訓(xùn)練來完成簡單任務(wù),通過精深專業(yè)而達(dá)到觸類旁通并無二致。其二,大模型的表征收斂是高維的簡單計(jì)算在復(fù)雜函數(shù)約束化下的收斂性問題,高維為多任務(wù)的縮放、多通道的融合和多層面的交互提供了可能,這就從技術(shù)路徑上回避了哥德爾不完全定律對(duì)系統(tǒng)完備性要求的問題。或者說,高維計(jì)算“通過可能的隱性或顯示正則化降低了經(jīng)驗(yàn)對(duì)系統(tǒng)收斂的影響”[62],使大模型能夠以升維的方式而非構(gòu)造完備系統(tǒng)的方式來解決系統(tǒng)表征原則的收斂性問題。一方面,這符合人類自近代以來注意經(jīng)驗(yàn)形而上學(xué)本質(zhì)的哲學(xué)傳統(tǒng);另一方面,意味著大模型充分考慮了人類實(shí)踐活動(dòng)中打破既定因果邏輯、開創(chuàng)全新聯(lián)結(jié)的客觀事實(shí);再一方面,表明高維雖不能完全保證系統(tǒng)降維之后的完備性問題,但卻具有現(xiàn)實(shí)的實(shí)踐有效性。因此,作為邁向通用智能重要成果的大模型的表征收斂,如果是類人智能的“思維”,那么其“是否具有客觀的真理性,這不是一個(gè)理論的問題,而是一個(gè)實(shí)踐的問題”[63]。這也就是為什么在人工智能通用化的過程中,無論是技術(shù)專家還是哲學(xué)學(xué)者,都特別注重用以訓(xùn)練人工智能大模型的原始數(shù)據(jù)的多與廣、真與大的根本原因之所在。因?yàn)閷?duì)于大模型而言,高維的簡潔雖然表現(xiàn)了表征的穩(wěn)定性,但實(shí)質(zhì)上卻意味著在更高的維度上本身有可能形成簡單的透視和簡潔的規(guī)則。

大模型高維達(dá)簡潔的表征收斂,顯然不是對(duì)人腦智能的復(fù)刻,而是人類理智智能對(duì)象化具有的一種能力。因此,大模型推進(jìn)通用智能實(shí)現(xiàn)本身并不意味著創(chuàng)造與人類等量齊觀的認(rèn)知主體,而是再一次推進(jìn)了人類認(rèn)知追求超越的必要性。本質(zhì)上講,大模型的跨越模型呈現(xiàn)的表征的統(tǒng)一性,是借助于高維達(dá)簡潔的泛化來達(dá)成的一種智能模型的通用性。高維計(jì)算能夠在多模態(tài)認(rèn)知、多任務(wù)處理和多層次生成方面幫助模型在其本身的泛化能力與模型結(jié)構(gòu)之間達(dá)到平衡狀態(tài),否則系統(tǒng)就會(huì)成為停不下來的圖靈機(jī)。一種模態(tài)的數(shù)據(jù)進(jìn)行訓(xùn)練,另一種模態(tài)的數(shù)據(jù)進(jìn)行測試,再一種模態(tài)的數(shù)據(jù)表達(dá)生成,是常用且有效的技術(shù)開發(fā)方法,這種方法不僅是“檢驗(yàn)?zāi)P驮诳缒B(tài)特征學(xué)習(xí)和共享表示學(xué)習(xí)方面的能力”[64]的重要方式,更能夠呈現(xiàn)模型本身跨越能力的關(guān)鍵。因?yàn)?,只有高維計(jì)算才有可能挖掘出跨數(shù)據(jù)、跨模態(tài)和跨模型的邏輯結(jié)構(gòu),才能使大模型形成的判斷知識(shí)體系、生成對(duì)象的邏輯原則和處理對(duì)象的思維鏈條表現(xiàn)收斂性,成為具有公理的表征能力。[65]通觀大模型表征收斂跨越并實(shí)現(xiàn)統(tǒng)一的上述邏輯,可以發(fā)現(xiàn)這樣一個(gè)事實(shí),即人類對(duì)智能本質(zhì)的理解、對(duì)思維邏輯的分析、對(duì)物質(zhì)力量的調(diào)用所構(gòu)成的高階自動(dòng)化體系能夠獲得類人的智能。顯然,這并非物自發(fā)獲得了智能,也不是人類創(chuàng)造出來了跨越物種奇點(diǎn)論的全新主體,更不是“圖靈人”[66]必將成為人類未來宿命的暗示,而是現(xiàn)實(shí)性地說明在人工智能時(shí)代探討智能一直在途中。大模型的表征收斂作為人類自我認(rèn)知旅途中創(chuàng)造出來的映射自我形象的存在,雖然存在著“數(shù)字的普遍理性”鄙夷受生物限定性的人之理智能力的可能,但卻永遠(yuǎn)不可能理解也無法達(dá)到人類從高維降維和從低維升維的心智能力和歷史理性。因?yàn)椋ㄓ腥祟愔悄懿庞斜?ldquo;高維即智能”的實(shí)踐智慧。

結(jié)論

誠如《三體》中所說,“基礎(chǔ)理論決定一切”[67],“柏拉圖式的表征假設(shè)”[68]決定了大模型表征必然收斂。這與其說是技術(shù)專家在為技術(shù)發(fā)展趨向?qū)で笮味蠈W(xué)的根基,倒不如說需要對(duì)人工智能自身的發(fā)展和特質(zhì)進(jìn)行深入的哲學(xué)探討。雖然人工智能表征收斂體現(xiàn)出強(qiáng)大的功能,不僅使其成為創(chuàng)造知識(shí)的高階自動(dòng)化體系,而且使得人工智能生產(chǎn)知識(shí)的邏輯也成為今天知識(shí)的內(nèi)容。但這顯然不是人工智能這一被人創(chuàng)造出來的系統(tǒng)獲得主體感知力和實(shí)踐創(chuàng)造力所致,而是人類一般知識(shí)對(duì)象化、自動(dòng)化的社會(huì)歷史成就。因此,大模型的表征收斂顯然不是智能機(jī)器獲得獨(dú)立認(rèn)知的成功,而是人認(rèn)知對(duì)象、探尋自我和驅(qū)動(dòng)對(duì)象的巨大成功。人工智能大模型的表征收斂本質(zhì)上是以技術(shù)邏輯表達(dá)哲學(xué)敘事:其一,數(shù)據(jù)記錄了類人實(shí)踐的邏輯,大模型以表征收斂的方式呈現(xiàn)了實(shí)踐的穩(wěn)定性、認(rèn)知的過程性和存在的一致性。因此,大模型雖然對(duì)于人類當(dāng)下的理論而言還是黑箱,但卻是人類認(rèn)知挖掘能力的延伸。這樣的延伸雖然并不直觀,但并沒有超越人對(duì)象化認(rèn)知能力、升華認(rèn)知經(jīng)驗(yàn)和創(chuàng)新認(rèn)知范式的范疇。其二,大模型以人類生產(chǎn)的數(shù)據(jù)和系統(tǒng)生成的數(shù)據(jù)為學(xué)習(xí)對(duì)象,不僅以表征收斂的方式刻畫了數(shù)據(jù)描述對(duì)象的能力,而且還生成了生產(chǎn)數(shù)據(jù)的能力,并且體現(xiàn)出了結(jié)構(gòu)的創(chuàng)新性、預(yù)測的有效性和學(xué)習(xí)的深入性。因此,大模型通過深度學(xué)習(xí)達(dá)致的表征收斂,本身指向的是社會(huì)歷史性和人性的穩(wěn)定性,人類通過大模型不斷擴(kuò)展自我的學(xué)習(xí)能力本身并沒有止境,人總是在奔向真理的途中。其三,大模型不僅能夠跨越數(shù)據(jù),而且能夠跨越模型的收斂性,顯然不是模型必將走向單一所致,也并非是對(duì)通用智能必將取代人類智能的預(yù)言,而是以大模型表征出來的人類智能的靈活性、發(fā)展性和歷史性。因此,大模型以技術(shù)邏輯的哲學(xué)敘事表明,人類智能是在高維抽象和降維具體之間達(dá)到的社會(huì)歷史性平衡。人類今天創(chuàng)造了人工智能大模型,明天也許會(huì)創(chuàng)造其他更為智能的社會(huì)歷史性存在,總是走在愈發(fā)智能的途中。

(本文系國家社會(huì)科學(xué)一般項(xiàng)目“馬克思主義哲學(xué)視域中的人工智能奇點(diǎn)論研究”的階段性成果,項(xiàng)目編號(hào):21BZX002)

注釋

[1][4][6][11][14][30][33][34][36][41][49][52][62][68]H. Minyoung et al., The Platonic Represtation Hypothesis, https://arxiv.org/abs/2405.07987.

[2]涂良川:《人工智能“無生命之生命化”技術(shù)敘事的歷史唯物主義審視——再論人工智能奇點(diǎn)論的哲學(xué)追問》,《學(xué)術(shù)交流》,2023年第12期。

[3][5][16][26][28][29][48][50]約瑟夫·希發(fā)基思:《理解和改變世界》,唐杰、阮南捷譯,北京:中信出版社,2023年,第114、87、85、113、113、117、19、27頁。

[7][13][63]《馬克思恩格斯選集》第1卷,北京:人民出版社,2012年,第134、669、134頁。

[8]瑪格麗特·博登:《AI:人工智能的本質(zhì)與未來》,孫詩惠譯,北京:中國人民大學(xué)出版社,2017年,第829頁。

[9]呂其鎂、涂良川:《“圖靈測試”技術(shù)敘事的哲學(xué)追問》,《哲學(xué)動(dòng)態(tài)》,2023年第3期。

[10][15]派利夏恩:《計(jì)算與認(rèn)知——認(rèn)知科學(xué)的基礎(chǔ)》,任曉明、王左立譯,北京:中國人民大學(xué)出版社,2007年,第28、27頁。

[12]梅瑞狄斯·布魯薩德:《人工不智能:計(jì)算機(jī)如何誤解世界》,陳少蕓譯,北京:中信出版社,2021年,第23頁。

[17]王天恩:《大數(shù)據(jù)和創(chuàng)構(gòu)認(rèn)識(shí)論》,《上海大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》,2021年第1期。

[18][19][20]Y. Bansal, P. Nakkiran, B. Barak, "Revisiting Model Stitching to Compare Neural Representations," Advances in Neural

Information Processing Systems, 2021, pp. 225–236.

[21][22][42]斯拉沃熱·齊澤克:《連線大腦里的黑格爾》,朱羽譯,西安:西北大學(xué)出版社,2023年,第9、9、215頁。

[23][56]涂良川:《Sora“抽象—具象”生成邏輯的真理觀敘事》,《思想理論教育》,2024年第5期。

[24]D. L. Yamins et al., "Performance-Optimized Hierarchical Models Predict Neural Responses in Higher Visual Cortex," Proceedings of the National Academy of Sciences, 2014, pp. 8619–8624.

[25][27]大衛(wèi)·查默斯:《現(xiàn)實(shí)+:每個(gè)虛擬世界都是一個(gè)新的現(xiàn)實(shí)》,熊祥譯,北京:中信出版社,2023年,第185頁。

[31]A. Dravid et al., "Rosetta Neurons: Mining the Common Units in a Model Zoo," In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 1934–1943.

[32][54]楊立昆:《科學(xué)之路:人、機(jī)器與未來》,李皓、馬躍譯,北京:中信出版社,2021年。

[35][38]宋冰編著,《智能與智慧:人工智能遇見中國哲學(xué)家》,北京:中信出版社,2020年,第42、43頁。

[37]伊恩·古德費(fèi)洛、約書亞·本吉奧、亞倫·庫維爾:《深度學(xué)習(xí)》,趙申劍等譯,北京:人民郵電出版社,2017年,第3頁。

[39][51]特倫斯·謝諾夫斯基:《深度學(xué)習(xí)》,姜悅兵譯,北京:中信出版社,2019年,第4、114頁。

[40]涂良川:《馬克思?xì)v史唯物主義視閾中的人工智能奇點(diǎn)論》,《東北師大學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版)》,2020年第1期。

[43]《馬克思恩格斯全集》第31卷,北京:人民出版社,1998年,第102頁。

[44]S. ?i?ek, Artificial Idiocy, Project Syndicate, 23 March 2023, https://www.project-syndicate.org/commentary/ai-chatbots-naive-idiots-no-sense-of-irony-by-slavoj-zizek-2023-03.

[45]涂良川:《深度學(xué)習(xí)追問學(xué)習(xí)本質(zhì)的哲學(xué)敘事》,《學(xué)術(shù)交流》,2022年第11期。

[46]熊明輝:《多維考察ChatGPT》,《中國社會(huì)科學(xué)報(bào)》,2023年3月6日,第5版。

[47]安迪·克拉克:《預(yù)測算法:具身智能如何應(yīng)對(duì)不確定性》,劉林澍譯,北京:機(jī)械工業(yè)出版社,2020年。

[53]高新民、付東鵬:《意向性與人工智能》,北京:中國社會(huì)科學(xué)出版社,2014年,第457頁。

[55]喬治·扎卡達(dá)基斯:《人類的終極命運(yùn)》,陳朝譯,北京:中信出版社,2017年,第288頁。

[57]劉慈欣:《三體III》,重慶出版社,2010年。

[58]《馬克思恩格斯全集》第30卷,北京:人民出版社,1995年,第47頁。

[59]周昌樂:《將“芯”比心:“機(jī)”智過人了嗎?》,杭州:浙江大學(xué)出版社,2024年,第22頁。

[60]J. Ngo, and Y. Kim, "What Do Language Models Hear? Probing for Auditory Representations in Language Models," arXiv, 2024.

[61]弗朗西斯·克里克:《驚人的假說——靈魂的科學(xué)探索》,汪云九等譯,長沙:湖南科學(xué)技術(shù)出版社,2001年,第36頁。

[64]J. Ngiam et al., "Multimodal Deep Learning," Proceedings of the 28th International Conference on Machine Learning (ICML–11), Stanford University, 2011.

[65]吳靜:《“世界模擬”的擬像迷思——基于通用視覺大模型技術(shù)的哲學(xué)反思》,《南通大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》,2024年第3期。

[66]尼爾·波斯曼:《技術(shù)壟斷:文化向技術(shù)投降》,何道寬譯,北京:中信出版社,2019年,第121頁。

[67]劉慈欣:《三體II》,重慶出版社,2008年。

責(zé) 編∕楊 柳 美 編∕梁麗琛

The Consistency of Representation and Its Philosophical Enlightenment

of Artificial Intelligence Large Models

Tu Liangchuan

Abstract: Large models of AI trained with big data, strong computing power, multimodality and high dimensionality are becoming more and more intelligent, reflecting human-like "smartness". Based on the requirements of system stability, functional effectiveness and optimisation possibilities, large models embed the attention mechanism into the system, so that different large models trained based on different data reflect the tendency of representational convergence when processing data. Representational convergence of the large models, on the one hand, shows that the deep learning based on neural networks has the technical potential to realise general artificial intelligence, and on the other hand, it also confirms that the intelligence formed by big data mining, large models transcendence, strong computing power iteration and high-dimensional perspectives has a human-like nature. Thus, while representational convergence of large models of AI is a technical embodiment of artificial intelligence, it is essentially a philosophical inquiry that quizzes the nature of intelligence in the form of an objectification of the essential power of humanity. It is not so much the stability of the large model that attempts to represent reality that drives the representational convergence of the system, Rather, it is the experiential sublimation of observation by large models with "mining as cognition", "learning to gain intelligence" and "high-dimensional simplicity", which constitutes the intelligent motivation for representational convergence.

Keywords: representational convergence, philosophical narratives, large models, artificial intelligence

[責(zé)任編輯:韓拓]